
Fast Copy-On-Write with
Apache Parquet

Xinli Shang, Mingmin Chen @ Uber Data Infra

shangxinli@apache.org

mailto:shangxinli@apache.org

Speaker Intro

● Xinli Shang
○ Senior Manager @ Uber
○ Apache Parquet PMC chair, Presto committer

● Mingmin Chen
○ Director @ Uber Data Infra

Agenda

● Uber data architecture

● Upserts challenges

● Apache Parquet introduction

● Fast Copy-On-Write within Parquet

● Conclusion & future work

Uber Data Architecture

Ingestion

(Parquet, Hudi,
Hoover)

Online Storage

Events

Telemetry

Feeds

Kafka Data
Lake

Compute Fabric

Real-Time Analytics

Data Platform & Tools

Batch Analytics

Stream Processing
(Flink, AthenaX) Complex Processing

(Spark)

Data Workflow
(Piper, uWorc)

BI Tools
(QueryBuilder, Dashbuilder, Summary)

Metadata Platform
(Databook, Quality, Lineage)

Interactive
(Presto)

ETL
(Hive)

Dashboards Reports Analysis Machine Learning

In-memory (Pinot)

storage

Security

Global Data
Warehouse

Uber Lakehouse Platform

A dataset need to be updated for different use case
● Trip fare is changed
● Change Data Capture (CDC)
● Change data for compliance reason

Updating datasets is not that easy
● Append only system
● Structure data with compression, e.g. Parquet
● Locating affected data files is slow

Updates in Lakehouse

Lakehouse Data Stack

● Data - A collection of files(e.g. Parquet) storing
table’s content

● Metadata - Info about a table schema,
partition, file and snapshot details

● Index - Data structure to efficiently locate
records within a table

Logic View of Table Update

trip_uuid … trip_fair_tips datestr
111-1111-1111-1111-1111111111111111 … 3 2023-06-30

22222-2222-2222-2222-22222222222222 … 8 2023-07-01

change trip_fair_tips to 5$ where trip_uuid = 111-1111..’ and datestr = ‘2023-06-30’

trip_uuid … trip_fair_tips datestr
111-1111-1111-1111-1111111111111111 … 5 2023-06-30

22222-2222-2222-2222-22222222222222 … 8 2023-07-01

Update in Plain Hive Table Format

update trip_fair_tips to 5$ where trip_uuid = ‘345-2342…..’ and datestr = ‘2023-06-30’

Update with Table Format (Copy-On-Write)

update trip_fair_tips to 5$ where trip_uuid = ‘345-2342…..’ and datestr = ‘2023-06-30’

Update with Table Format (Merge-On-Read)

update trip_fair_tips to 5$ where trip_uuid = ‘345-2342…..’ and datestr = ‘2023-06-30’

Comparison Copy-On-Write and Merge-On-Read

Copy-on-Write (CoW)

● Modifications create entirely new copies
of the affected data

● Lead to increased storage usage

● Slower for rewriting, faster for reading

Merge-on-Read (MoR)

● Append changes in the form of delta files,
avoiding complete rewrites

● Reader need to merge

● Slower for reading, faster for writing

Some use cases prefer copy-on-write, e.g right-to-be-forgotten

Large scale use cases of CoW is challenge!!!

Apache Parquet Introduction

● A columnar storage file format for big data processing

● Stores complex nested data structures in a highly
efficient and compressed manner

● Widely used in the big data ecosystem, supporting
various processing frameworks

Introduce Row-Level Secondary Index
● Each entry of the index table

pointing to Parquet internal
structure: page, rowgroup etc

● Locate data record in a table
precisely: which parquet page has it.

● Make fast copy-on-write possible

● But more expensive for storing index

Introducing Copy-on-Write in Apache Parquet
● Improvement in copying and rewriting a new parquet file

● Utilize row-level index to accurately locate which Parquet pages have the records to
be updated

● Only decoding/decompress the pages that need to be updated

● Bytebuffer copy those not needed pages

Copy-On-Write within Apache Parquet

Copy & Update
Traditional New

Copy & update

Update Value

Limitations

● The storage size of row-level index is pretty large

● Updates to data are not reflected in the index realtime

Conclusion

Efficient upserts are critical for data lakehouse.

Speed remains a challenge, when volume scales up

Fast copy-on-write within Apache Parquet files with row-level indexing

● Skip unnecessary data pages reads and writes efficiently
● Improve the speed of upserts

Future Work

● Improve the large storage size issue of row-level index

● Integrate the row-level index and fast copy-on-write feature to table
formats

Q & A

Send questions to: shangxinli@apache.org

mailto:shangxinli@apache.org

	Slide Number 1
	Speaker Intro
	Agenda
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Lakehouse Data Stack
	Logic View of Table Update
	Update in Plain Hive Table Format
	Update with Table Format (Copy-On-Write)
	Update with Table Format (Merge-On-Read)
	Comparison Copy-On-Write and Merge-On-Read
	Apache Parquet Introduction
	Introduce Row-Level Secondary Index

	Introducing Copy-on-Write in Apache Parquet
	Copy-On-Write within Apache Parquet
	Copy & Update
	Limitations
	Conclusion
	Future Work
	Slide Number 21

