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Speaker Intro 

● Xinli Shang
○ Senior Manager @ Uber  
○ Apache Parquet PMC chair, Presto committer  

● Mingmin Chen
○ Director @ Uber Data Infra 



Agenda

● Uber data architecture

● Upserts challenges 

● Apache Parquet introduction 

● Fast Copy-On-Write within Parquet

● Conclusion & future work  
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Uber Lakehouse Platform



A dataset need to be updated for different use case
● Trip fare is changed 
● Change Data Capture (CDC)
● Change data for compliance reason

Updating datasets is not that easy
● Append only system
● Structure data with compression, e.g. Parquet
● Locating affected data files is slow 

Updates in Lakehouse



Lakehouse Data Stack

● Data - A collection of files(e.g. Parquet) storing 
table’s content 

● Metadata - Info about a table schema, 
partition, file and snapshot details 

● Index - Data structure to efficiently locate 
records within a table



Logic View of Table Update

trip_uuid … trip_fair_tips datestr
111-1111-1111-1111-1111111111111111 … 3 2023-06-30

22222-2222-2222-2222-22222222222222 … 8 2023-07-01

change trip_fair_tips to 5$ where trip_uuid = 111-1111..’ and datestr = ‘2023-06-30’

trip_uuid … trip_fair_tips datestr
111-1111-1111-1111-1111111111111111 … 5 2023-06-30

22222-2222-2222-2222-22222222222222 … 8 2023-07-01



Update in Plain Hive Table Format

update trip_fair_tips to 5$ where trip_uuid = ‘345-2342…..’ and datestr = ‘2023-06-30’



Update with Table Format (Copy-On-Write)

update trip_fair_tips to 5$ where trip_uuid = ‘345-2342…..’ and datestr = ‘2023-06-30’



Update with Table Format (Merge-On-Read)

update trip_fair_tips to 5$ where trip_uuid = ‘345-2342…..’ and datestr = ‘2023-06-30’



Comparison Copy-On-Write and Merge-On-Read

Copy-on-Write (CoW)

● Modifications create entirely new copies 
of the affected data

● Lead to increased storage usage 

● Slower for rewriting, faster for reading

Merge-on-Read (MoR)

● Append changes in the form of delta files, 
avoiding complete rewrites

● Reader need to merge

● Slower for reading, faster for writing 

Some use cases prefer copy-on-write, e.g right-to-be-forgotten 

Large scale use cases of CoW is challenge!!! 



Apache Parquet Introduction

● A columnar storage file format for big data processing 

● Stores complex nested data structures in a highly 
efficient and compressed manner

● Widely used in the big data ecosystem, supporting 
various processing frameworks



Introduce Row-Level Secondary Index
● Each entry of the index table 

pointing to Parquet internal 
structure: page, rowgroup etc

● Locate data record in a table 
precisely: which parquet page has it.

● Make fast copy-on-write possible

● But more expensive for storing index



Introducing Copy-on-Write in Apache Parquet
● Improvement in copying and rewriting a new parquet file 

● Utilize row-level index to accurately locate which Parquet pages have the records to 
be updated

● Only decoding/decompress the pages that need to be updated

● Bytebuffer copy those not needed pages 



Copy-On-Write within Apache Parquet



Copy & Update
Traditional New

Copy & update

Update Value



Limitations

● The storage size of row-level index is pretty large 

● Updates to data are not reflected in the index realtime 



Conclusion

Efficient upserts are critical for data lakehouse. 

Speed remains a challenge, when volume scales up

Fast copy-on-write within Apache Parquet files with row-level indexing

● Skip unnecessary data pages reads and writes efficiently 
● Improve the speed of upserts 



Future Work 

● Improve the large storage size issue of row-level index 

● Integrate the row-level index and fast copy-on-write feature to table 
formats



Q & A

Send questions to: shangxinli@apache.org

mailto:shangxinli@apache.org
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